

Numeracy Reference Book

Name
Class

Numeracy is a vital skill for learning, life and work.
I \dagger is about being confident when solving problems, making decisions and analysing situations that involve numbers.

Topic	What's Involved	Pages(s)
Estimation and Rounding	Rounding to whole numbers and decimal places Working with and rounding to Significant Figures.	$3-5$
Number And Number Processes	The four operations including working with multiples of 10, decimals, and negative numbers.	$6-9$
Fractions, Percentages	Converting between fractions, decimals and percentages. Percentage problems. Ratio and Proportion.	$10-17$
Money	Finding 'best buy'. Currency conversion.	Using 12 and 24-hour time. Time intervals and usits of time. Speed distance time problems.
Time	Estimating length, mass, area and capacity. Converting between units. Calculating perimeter, area and volume.	$22-24$
Measurement	19	
Data Analysis	Drawing, reading and understanding graphs and charts. Misleading data. Averages.	$25-31$
Probability	Language of probability. Calculating probabilities.	$20-21$
Using Your Calculator	Addressing some key issues when using a scientific calculator.	34
Numeracy Dictionary	Key mathematical words and their meanings.	$35-38$
Extra help	A list of helpful websites for extra practice.	39

Estimation and Rounding

Rounding whole numbers

Example: The population of the UK is $66,306,524$
(based on UN estimates Oct 17)
This number can be rounded to make it less accurate but easier to use.

Eg rounding to the nearest thousand.
Step 1 - locate the digit to be rounded 66,30 (6. 525

Step 2 - look to the digit after that one to decide if rounding up or down 66,306 525

Since $\underline{\mathbf{5}}$ is ' 5 or above' then the number is rounding up. $66,306 \underline{5} 25 \longrightarrow 66,307,000$

Rounding the same number to the nearest hundred, we follow the same rules but start with the hundreds column

$$
66,306,525 \longrightarrow 66,306,500
$$

This time the number (5) stays the same since the number after it is 'less than 5^{\prime}.

More Examples

59,312 to the nearest hundred is 59,300
$4,374,109$ to the nearest ten thousand is $4,380,000$
3,897 to the nearest ten is 3,900

Rounding decimal numbers

This is very similar but, unlike with whole numbers, we don't need to add zeros at the end to keep place value - we can already see which columns the numbers are in.
$569 \rightarrow 570$ (because 57 would be a much smaller number)
BUT
$0.569 \rightarrow 0.57$ (since the 5 is still in the tenths column and the 7 is in the hundredths)

More Examples

$0.3782 \rightarrow 0.378$ to $3 \mathrm{~d} . \mathrm{ps}$ (since the number after is less than 5)
$21.359 \rightarrow 21.36$ to $2 \mathrm{~d} . \mathrm{ps}$ (since the number after is 5 or above)
$3.23515 \rightarrow 3.2$ to $1 \mathrm{~d} . \mathrm{p}$ (since the number after is less than 5)
We only look at the one digit after the place to be rounded.

- Recurring Decimals

Some decimal values have repeating digits.
Eg $1 \div 3$ gives 0.3333333 ... This is often written as 0.3
$2 \div 3$ gives $0.6666666 \ldots$ This is often written as 0.6
NOTE - This number has not been rounded and this will not be accepted as correct for the final answer in many subjects.

Rounded, $1 \div 3$ gives 0.33 (to 2 decimal places) and $2 \div 3$ gives 0.67 (to 2 decimal places)

Significant Figures

Whether we want to round to the nearest thousand or nearest thousandth often depends on the size of the number. For this reason, significant figures are often used.

Significant means giving us important information about the number.

The speed of light is 299,792,458 metres per second.
This is usually rounded to $300,000,000$ (one significant figure).
The zeros here are only there to show the place value.
J is an irrational number which goes on forever, beginning with 3.1415926 \qquad which we usually round to 3.14 (3 sig figs)

Zeros at the beginning or end of a number which only show place value are not significant.

5437 has 4 sig figs.
Rounding to one significant figures gives 5,000.

These zeros are only there to show the 5 is in the thoursands column

49,063 has 5 sig figs.
Rounding to 4 sig figs gives 49,060
This zero is significant because it's within an accurate number - not just at beginning or end to show position.
The zero at the end is there through rounding so it not significant. It is only there to fill the units column.

0.06205 has 4 sig figs.

Rounding to 1 sig fig gives 0.06

Zeros at the beginning of a number are not significant.

Multiplying by multiples of 10 and 100

To multiply by 10 you move every digit one place to the left.
To multiply by 100 you move every digit two places to the left.

Example 1 (a) Multiply 354 by 10 (b) Multiply 50.6 by 100

We can then multiply by multiples of 10,100 etc.
To multiply by 30 you can multiply by 3 and multiply by 10 ($x 30$ is equivalent to $\times 3 \times 10$)
(a) 2.36×20
(b) 38.4×50
$2.36 \times 2=4.72$
$38.4 \times 5=192.0$
$4.72 \times 10=47.2$
$192.0 \times 10=1920$
so $2.36 \times 20=47.2$
so $38.4 \times 50=1920$

Division

Example 1 There are 192 pupils in first year, shared equally betweer 8 classes. How many pupils are in each class?

$$
8 \longdiv { 2 4 }
$$

There are 24 pupils in each class

Example 2 Divide 4.74 by 3

$$
\frac{1.58}{3 \longdiv { 4 \cdot { } ^ { 1 } 7 ^ { 2 } 4 }}
$$

> When dividing a decimal number by a whole number, the decimal points must stay in line.

Example 3 A jug contains 2.2 litres of juice. If it is poured evenly into 8 glasses, how much juice is in each glass?

$$
8 \frac{0.275}{2.2^{6} 0^{4} 0}
$$

Each glass contains 0.275 litres

If you have a remainder at the end of a calculation, add a zero onto the end of the decimal and continue with the calculation.

Integers

An integer is what is more commonly known as a whole number. It may be positive, negative, or the number zero, but it must be whole.

Remember - No Sign in front of a number means it is positive

Adding and Subtracting positive numbers

A number line may be used

Examples $5+3=8$

$-3+2=-1$

$$
6-5=1
$$

If you add a positive numberyou move to the right on a number line.
If you subtract a positive number you move to the left on a number line.
Always start from the position of the first number.

Adding or subtracting negative numbers.
Adding a negative number is the same as subtracting:
Example $\quad 7+(-3)$ is the same as $7-3=4$

General rule $a+(-b)=a-b$
Subtracting a negative number is the same as adding:
Example $\quad(-5)-(-2)$ is the same as $(-5)+2=-3$

General rule $a-(-b)=a+b$

Multiplying and Dividing Integers

Multiplying Integers Rules

$$
\begin{aligned}
& \oplus \times \oplus=\oplus \\
& \Theta \times \Theta=\oplus \\
& \oplus \times \Theta=\Theta \\
& \odot x \oplus=\Theta
\end{aligned}
$$

Dividing Integers Rules

$$
\begin{aligned}
& \oplus \div \oplus=\oplus \\
& \Theta \div \Theta=\oplus \\
& \oplus \div \Theta=\Theta \\
& \Theta \div \oplus=\Theta
\end{aligned}
$$

Examples
$-15 \div(-3)=5$
$-12 \div 2=-6$
$40 \div(-8)=-5$

Fractions, Decimals and Percentages

Equivalent Fractions

Example

What fraction of the flag is shaded?

6 out of 12 squares are shaded. So $\frac{6}{12}$ of the flag is shaded.
It could also be said that $\frac{1}{2}$ the flag is shaded.
$\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions.

We find equivalent fraction by multiplying or dividing both parts of a fraction by the same number.

Simplifying Fractions

Here we divide numerator and denominator by a common factor to get an

equivalent but easier-to-understand fraction.

Finding a fraction of an amount

To find a fraction of an amount,
Example 1 Find $\frac{1}{5}$ of $£ 150$
we find one fifth or one third first, then multiply for how many we need.

$$
\frac{1}{5} \text { of } £ 150=£ 150 \div 5=£
$$

Example 2 Find $\frac{3}{4}$ of 48

$$
\begin{aligned}
& \frac{1}{4} \text { of } 48=48 \div 4=12 \\
& \text { so } \frac{3}{4} \text { of } 48=3 \times 12=36
\end{aligned}
$$

Adding and Subtracting Fractions

This is easy when the denominators are the same

The denominator (number of parts) stays the same and we add/subtract the numerators.

When the denominators are different, we need to find equivalent fractions with the same denominators.

$$
\begin{aligned}
& \frac{2}{5}+\frac{1}{3} & \frac{2}{5}=\frac{6}{15} \\
= & \frac{6}{15}+\frac{5}{15} & \overbrace{<3}^{x 3} \\
= & \frac{11}{15} & \frac{1}{3}=\frac{5}{15}
\end{aligned}
$$

Improper Fractions and Mixed Numbers

An 'improper fraction' is one where the numeractor is larger than the denominator. Eg

$$
\frac{5}{4} \text { and } \frac{11}{3}
$$

These can be written as a mixture of whole number and leftover fraction.

$$
\frac{5}{4}=1 \frac{1}{4}
$$

$$
\frac{11}{3}=3 \frac{2}{3}
$$

Multiplying and Dividing Fractions

Percentages

Commonly used Percentages

Percentage	Fraction	Decimal
1%	$\frac{1}{100}$	0.01
10%	$\frac{1}{10}$	0.1
20%	$\frac{1}{5}$	0.2
25%	$\frac{1}{4}$	0.25
$33^{1} / 3 \%$	$\frac{1}{3}$	$0.333 \ldots$
50%	$\frac{1}{2}$	0.5
$66^{2} / 3 \%$	$\frac{2}{3}$	$0.666 \ldots$
75%	$\frac{3}{4}$	0.75

Calculating a percentage without a calculator

We can use our common percentages to help us - since we know their equivalent fractions and we know how to calculate a fraction of a number.

Percentages that are more complicated can be broken down.

Example Find 9% of 200 g

$$
\begin{aligned}
& 1 \% \text { of } 200 \mathrm{~g}=\frac{1}{100} \text { of } 200 \mathrm{~g}=200 \mathrm{~g} \div 100=2 g \\
& \text { so } 9 \% \text { of } 200 \mathrm{~g}=9 \times 2 \mathrm{~g}=18 \mathrm{~g}
\end{aligned}
$$

Example Find 23\% of $£ 15000$

$$
\begin{array}{ll}
10 \% \text { of } £ 15000=£ 1500 & \text { so } 20 \%=£ 1500 \times 2=£ 3000 \\
1 \% \text { of } £ 15000=£ 150 & \text { so } 3 \%=£ 150 \times 3=£ 450 \\
23 \% \text { of } £ 15000 & =£ 3000+£ 450=£ 3450
\end{array}
$$

Calculating a percentage with a calculator
Remember 9\% means 9 9100

$$
\begin{aligned}
& \text { so } 9 \% \text { of } 200 \mathrm{~g} \\
& =9 \div 100 \times 200 \\
& =18 \mathrm{~g}
\end{aligned}
$$

23% of $£ 15000$
$=23 \div 100 \times 15000$
$=£ 3450$

Expressing one number as a percentage of another

This is when you have two values and want to show how big one value is compared to another.

For instance if you got 18 out of 25 in a test

$$
\frac{18}{25}=18 \div 25=0.72
$$

To find this as a percentage, simply multiply by 100: $\quad 0.72=72 \%$

Example

In class $1 \times 1,14$ pupils had brown hair, 6 pupils had blonde hair, 3 had black hair and 2 had red hair. What percentage of the pupils were blonde?

Total number of pupils $=14+6+3+2=25$
6 out of 25 were blonde, so.
$\frac{6}{25}=6 \div 25=0.24=24 \%$
24% were blonde.

Ratio

Writing Ratios

Example 1

To make a fruit drink, 4 parts water is mixed with 1 part of cordial.
 The ratio of water to cordial is 4:1
 (said "4 to 1")
 The ratio of cordial to water is 1:4.

Order is important when writing ratios.

Example 2

In a bag of balloons, there are 5 red, 7 blue and 8 green balloons.

The ratio of red : blue: green is $5: 7: 8$

Simplifying Ratios

Purple paint can be made by mixing 10 tins of blue paint with 6 tins of red. The ratio of blue to red can be written as $10: 6$

It can also be written as $5: 3$

Blue : Red
10: 6
$5: 3$

To simplify a ratio,
divide each figure
in the ratio by a
common factor.

Simplifying Ratios

Sometimes the values in the ratio are decimal numbers. To make them simpler we may want larger values. This can be done by first multiplying by 10 / 100 / 1000 etc. to get to whole numbers, then dividing down to smaller whole numbers if possible.

Example

An average African elephant is 3.6 m , whereas an average Asian elephant is 2.8 m .

The ratio of heights of African to Asian elephants is:

$$
\begin{aligned}
3.6 & : 2.8 \\
36 & : 28 \\
9 & : 7
\end{aligned}
$$

Using ratios

The ratio of fruit to nuts in a chocolate bar is 3:2. If a bar contains 15 g of fruit, what weight of nuts will it contain?
$\left.\begin{array}{c|c}\text { Fruit } & \text { Nuts } \\ \hline \times 5\left(\begin{array}{c}3 \\ 15\end{array}\right. & 2 \\ 10\end{array}\right) \times 5$

So the chocolate bar will contain 10 g of nuts.

Proportion

Two quantities are said to be in direct proportion if when one doubles the other doubles.
We can use proportion to solve problems.

It is often useful to make a table when solving problems involving proportion.

Example 1

A car factory produces 1500 cars in 30 days. How many cars would they produce in 90 days?
$\left.\begin{array}{c|c}\text { Days } & \text { Cars } \\ \hline \times 3\left(\begin{array}{l}30 \\ 90\end{array}\right. & 1500 \\ 4500\end{array}\right) \times 3$

The factory would produce 4500 cars in 90 days.

Money

Calculating 'best buy'

The same brand of coffee is sold in two different sized jars as shown.
Which jar represents better value for money?

Find the cost per gram for both jars.
100 g costs 185 p so $185 \div 100=1.86$ p per gram.
250 g costs 315 p so $315 \div 250=1 \cdot 26$ p per gram.
1.26 p per gram is less than 1.86 p per gram, so the large jar is better value for money.

Currency Exchange

The rate of exchange for each currency will normally be given by an amount per $£$ and it changes daily. Great Britain uses the pound (GBP) as its currency. Many European countries use the Euro.

Foreign Money $=$ Number of Pounds \times Exchange Rate
Number of Pounds $=$ Foreign Money \div Exchange Rate
In May 2010 the exchange rate was: $£ 1 \longrightarrow € 1 \cdot 15$

Example 1 Robert goes on holiday to Paris and takes $£ 600$ spending money with him. Using the exchange rate above how many Euros would he get?

Euros $=600 \times 1.15=€ 690$

Example 2 Jim returns from a school trip to Germany with €85. Use the exchange rate above to find out how many pounds he will get back.

$$
\text { Pounds }=85 \div 1.15=£ 73.9130 \ldots=£ 73.91
$$

Time

12 and 24 hour time

12 hour time uses 'am' and 'pm'
and seperates the two halves of our day.

24 hour time doesn't need 'am' and 'pm' as it continues through our whole day.

Converting 'pm' times to 24 hour
Add 12 to the hours between 1:00 and 11:59 PM and eliminate "PM"

$$
\begin{array}{lll}
\text { 1:00 } P M=13: 00 & 7: 00 \quad P M=19: 00 \\
2: 00 \quad P M=14: 00 & 8: 00 \quad P M=20: 00 \\
\text { 3:00 } P M=15: 00 & 9: 00 \quad P M=21: 00 \\
4: 00 \quad P M=16: 00 & 10: 00 \quad P M=22: 00 \\
\text { 5:00 } P M=17: 00 & 11: 00 \quad P M=23: 00 \\
\hline 6: 00 \quad P M=18: 00 &
\end{array}
$$

Time Intervals

Start Time: 1:45 p.m.
End Time: 3:30 p.m.
Elapsed Time: ?

1 hour $+15 \mathrm{~min}+30 \mathrm{~min}=1$ hour and 45 minutes

We can calculate the time taken for an event / journey using jumps.

The time passed between 1:46pm and $3: 30 \mathrm{pm}$ is 1 hour and 45 minutes.

Note: laying out as a subtraction will not work (since there are not 100 minutes in an hour)

Units of Time

Conversion	Rule	Example
Days into Hour	1 day $=24$ hours	7 days $=7 \times 24=168$ hours
Days and hours into hours	First, convert days into hours by multiplying number of days with 24 and then add hours into it.	7 days 9 hours 7 7 days +9 hours $(7 \times 24)+9$ hours $=168$ hours +9 hours $=177$ hours
Hours into Minutes	1 hour $=60$ minutes	5 hours $=5 \times 60=300$ minutes
Hours and minutes into minutes	First, convert hours into minutes by multiplying number of hours with 60 and then add minutes into it.	7 hours 45 minutes $=7$ hours +45 minutes $=(7 \times 60)+45$ minutes $=420+45$ $=465$ minutes
Minutes into seconds	1 minute $=60$ seconds	25 minutes $=60 \times 25=1500$ seconds

Distance, Speed and Time.

Distance $=$ Speed \times Time
Speed $=\frac{\text { Distance }}{\text { Time }}$
Time $=\frac{\text { Distance }}{\text { Speed }}$
To help remember equations of this form a magic triangle can be used
e. 9

Example Calculate the speed of a train which travelled 450 km in 5 hours

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}
$$

$$
=450 \div 5
$$

$$
=9 \mathrm{~km} / \mathrm{h}
$$

In Physics, you must use the correct scientific symbols.
Speed - v
Time - t
Distance - d

Example

Calculate the time taken for a Radio wave travelling at $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ to travel $36,000 \mathrm{~km}$.

$$
\begin{aligned}
t & =\frac{d}{v} \\
& =\frac{36,000,000}{3 \times 10^{8}}
\end{aligned}
$$

Note: the distance needed to be in 'metres' to match up with a speed in 'metres per second'.

This gives an answer in 'seconds'
$=0.12$ seconds

Measurement

Units of length, Volume and Weight

Length	Volume (Capacity)	Weight
$10 \mathrm{~mm}=1 \mathrm{~cm}$	$1000 \mathrm{ml}=1$ litre	$1000 \mathrm{mg}=1 \mathrm{~g}$
$100 \mathrm{~cm}=1 \mathrm{~m}$	$100 \mathrm{cl}=1$ litre	$1000 \mathrm{~g}=1 \mathrm{~kg}$
$1000 \mathrm{~m}=1 \mathrm{~km}$	$10 \mathrm{dl}=1$ litre	$1000 \mathrm{~kg}=1$ tonne
	$1000 \mathrm{~cm}^{3}=1$ litre	

Converting Units

- If changing from small units to large units (for example, g to kg), we divide.
- If changing from large units to small units (for example, km to m), we multiply.

The diagram below will hopefully help you convert metric lengths.

Perimeter

The total distance around the outside edge of a shape is called the perimeter. The units in the perimeter calculation should be the same.

Example 1 Calculate the perimeter of the shape below.
$P=6+5+4+5=20 \mathrm{~cm}$

Area

Area is defined as the surface covered by a $2 D$ shape. Again like perimeter before we perform any calculations you have to check that all the units are consistent with perimeter.

The area of a rectangle is given by $\boldsymbol{A}=\boldsymbol{l} \times \boldsymbol{b}$ (length times breadth).
The area of a triangle is given by $A=\frac{1}{2} \times b \times h$ (half times the base times the height).

Note that base and height of a triangle must be perpendicular (at right angles to each other).

Note: More complicated shapes can be split up into separate shapes.
Example Calculate the area of the shape below.

$$
\begin{aligned}
\text { Area } 1 & =l \times b \\
A & =4 \times 2.2 \\
A & =8.8
\end{aligned}
$$

$$
\begin{array}{rlr}
\text { Area } 2 & =\frac{2}{2} \times b \times h & h=3.2-2.2 \\
A & =\frac{1}{2} \times 4 \times 1 & h=1 \\
A & =2 & \\
& \\
\text { Total area } & =8.8+2 & \\
& =10.8 \mathrm{~m}^{2} &
\end{array}
$$

Volume

The volume of a shape is simply the "amount of space" it takes up and is three dimensional.

A small cube measuring 1 cm by 1 cm by 1 cm has a volume of 1 cubic centimetre or $1 \mathrm{~cm}^{3}$. This space is equivalent to 1 ml of liquid.

The volume of a cuboid is calculate by multiplying the length by the breadth by the height, the formula is $V=l \times b \times h$.

All the units in the calculation should be the same through out.
Example 1 Calculate the volume of the cuboid.

$$
\begin{aligned}
& V=l \times b \times h \\
& V=9 \times 2 \times 3 \\
& V=54 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of the cuboid is $54 \mathrm{~cm}^{3}$

Data Analysis

Bar Graphs

Example 1 Examole of a Bar Graph

How do pupils travel to school?

An even space should be between each bar and each bar should be of an equal width. (also leave a space between vertical axis and the first bar.)

Line Graphs

Line graphs consist of a series of points which are
 plotted, then joined by a line. All graphs should have a title, and each axis must be labelled. The trend of a graph is a general description of it.

Example 1 The graph below shows Heather's weight over 14 weeks as she follows an exercise programme.

The trend of the graph is that her weight is decreasing.

Combined Graphs

We use different types of graphs for different data and relationships.
For example, in Geography you will look at Climate Graphs, which use lines to show temperature and bars for rainfall.

We can draw these on the same graph. This means we will have two sets of numbers (temperature and rainfall) up the sides so we need to be careful to read the correct scale.

For instance, this graph shows that in June, the average rainfall was 125 mm and the average temperature was around $12.5^{\circ} \mathrm{C}$.

Scatter Graphs

A scatter graph can be used to show the relationship between two sets of data.

Ice Cream Sales vs Temperature	
Temperature $^{\circ} \mathrm{C}$	Ice Cream Sales
14.2°	$\$ 215$
16.4°	$\$ 325$
11.9°	$\$ 185$
15.2°	$\$ 332$
18.5°	$\$ 406$
22.1°	$\$ 522$
19.4°	$\$ 412$
25.1°	$\$ 614$
23.4°	$\$ 544$
18.1°	$\$ 421$
22.6°	$\$ 445$
17.2°	$\$ 408$

For example, this table shows the amount of money made on Ice Cream Sales at different temperatures.

This data can be plotted to show that as the temperature increases, the money made on Sales increases.

A line of best fit' which best fits the point can be drawn.
This line allows us to predict sales at certain temperature which haven't been recorded yet.

Pie Charts

> A pie chart can be used to display information. Each sector (slice) of the chart represents a different category. The size of each category can be worked out as a fraction of the total using the number of divisions or by measuring angles.

Example 30 pupils were asked the colour of their eyes. The results are shown in the pie chart below.

How many pupils had brown eyes?

Example 2

90 people were asked their favourite sport and the pie chart shows their responses.

How many people chose each sport?

Swimming: $\quad \frac{100}{360} \times 90=25$ pupils

Basketball: $\frac{60}{360} \times 90=15$ pupils

Tennis: $\quad \frac{80}{360} \times 90=20$ pupils

Football: $\frac{120}{360} \times 90=30$ pupils

We can check our answers by checking the number of pupils adds up to 90 .

Drawing Pie Charts

Example: In a survey about school, a group of pupils were asked what was their favourite subject. Their answers are given in the table below. Draw a pie chart to illustrate the information.

Subject	Number of people
Mathematics	28
Home Economics	24
Music	10
Physics	12
PE	6

Total number of people $=80$

Mathematics	$=\frac{28}{80} \rightarrow \frac{28}{80} \times 360^{\circ}=126^{\circ}$
Home Economics	$=\frac{24}{80} \rightarrow \frac{24}{80} \times 360^{\circ}=108^{\circ}$
Music	$=\frac{10}{80} \rightarrow \frac{10}{80} \times 360^{\circ}=45^{\circ} \quad$Check that the total $=$ 360°
Physics	$=\frac{12}{80} \rightarrow \frac{12}{80} \times 360^{\circ}=54^{\circ}$
PE	$=\frac{6}{80} \rightarrow \frac{6}{80} \times 360^{\circ}=27^{\circ}$

Misleading Data

Sometimes graphs can be misleading. A common reason for this is inconsistent scales, or scales which don't start at zero.

In the graph below, the size of the bars suggests that the value for 1992 is about half of that in 1993.

However, in 1992 the value was $\$ 3500$ and only went up to around $\$ 4000$ in 1993.

To stop our graphs being misleading, we need to make sure our scales start at zero and go up in equal amounts each division.

Averages

The mean, median and mode are all types of average. It depends on the data and circumstances which average is most suitable.

The range is not an average. It is a measure of how spread out the numbers are.

Mean

The mean is found by adding all the data together and dividing by the number of values.

Median

The median is the middle value when all the data is written in numerical order (if there are two middle values, the median is half-way between these values).

Mode

The mode is the value that occurs most often.

Range

The range of a set of data is a measure of spread.
Range $=$ Highest value - Lowest value

Example Class 1 A scored the following marks for their homework assignment. Find the mean, median, mode and range of the results.
6.
6. 9
9. 7, 5, 6.
6. 10 ,
9. 8, 4, 8,
5, 7

$$
\begin{aligned}
\text { Mean } & =\frac{6+9+7+5+6+6+10+9+8+4+8+5+7}{13} \\
& =\frac{90}{13}=6.923 \ldots \quad \text { Mean }=6.9 \text { to } 1 \text { decimal place }
\end{aligned}
$$

Ordered values: 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10
Median = 7

6 is the most frequent mark, so Mode $=6$

Hey diddle diddle
The median's in the middle;
You add and divide for the
mean.
The mode is the one that
appears the most
And the range is the difference
between.

Probability

Probability is the chance that something will happen. It can be shown on a line:

We can use fractions to show probability

A probability of 0 means impossible.
A probability of 1 means certain.

To find the probability of an event we use the rule:

$$
P(\text { event })=\frac{\text { Number of favourable outcomes }}{\text { Number of possible outcomes }}
$$

Example 1 What is the probability of picking a black counter from a bag containing 5 red, 3 blue and 2 black counters?

Number of favourable outcomes $=2$ (number of black counters)
Number of possible outcomes $=5+3+2=10$ (total number of counters)
$P($ black $)=\frac{2}{10}=\frac{1}{5}$ Always leave your fraction in its simplest form.
Example 2 If a die (singular of dice) is thrown 300 times, approximately how many fives are likely to be obtained?
$P(5)=\frac{1}{6}$
We multiply 300 by $\frac{1}{6}$ since 5 is expected $\frac{1}{6}$ of the time.
$\frac{1}{6} \times 300=50$ fives
Approximately 50 fives will be obtained.

Using Your Scientific Calculator

- The 'fraction button'

Remember that when values are written as a fraction, the way to calculate a decimal answer is to divide. $\frac{6}{5}$ means $6 \div 5$ which is equal to 1.2

You don't need to use the - button.

- Scientific Notation

Your calculator can be set to give you numbers in Scientific Notation.
To do this on most Casio calculators, go to 'SHIFT' \& 'SETUP' then choose '7:Sci'. You can then choose the number of significant figures you would like.

To change back, go to 'SHIFT' \& 'SETUP', choose '8:Norm' then ' 2 '.

- The SD button

This button will change the form of your answer. $\mathrm{Eg} \frac{2}{3}$ to 0.6 to 0.6666666
Remember - 0.6 is not rounded and is not acceptable as a final answer in some subjects.

Numeracy Dictionary - Key words

Add; Addition $(+)$	To combine 2 or more numbers to get one number (called the sum or the total) Example: $12+76=88$
a.m.	(ante meridiem) Any time in the morning (between midnight and 12 noon).
Approximate	An estimated answer, often obtained by through rounding.
Calculate	Find the answer to a problem. It doesn't mean that you must use a calculator!
Conclusion	A statistical statement made on data. 'Drawing' a conclusion is coming up with this statement. Eg the higher the temperature, the more ice-cream was sold.
Consecutive	Following each other in order. Eg - Wednesday, Thursday and Friday are consecutive days. $17,18,19,20$ are consecutive numbers.
Continuous Data	Data with an infinite number of possible values within a selected range e.g. temperature, height, length
Data	A collection of information (may include facts, numbers or measurements).
Discrete	Data which can only have a finite or limited number of possible values. Shoe sizes are an example of discrete data because sizes 6 and 7 mean something, but size 6.3 for example does not.
Denominator	The bottom number in a fraction (the number of parts into which the whole is split).

$\left.\begin{array}{|l|l|}\hline \text { Difference (-) } & \begin{array}{l}\text { The amount between two numbers (subtraction). } \\ \text { Example: The difference between } 50 \text { and } 36 \text { is } 14 \\ 50-36=14\end{array} \\ \hline \text { Division (} \div \text {) } & \begin{array}{l}\text { Sharing a number into equal parts. } \\ 24 \div 6=4\end{array} \\ \hline \text { Double } & \text { Multiply by } 2 . \\ \hline \text { Equals (}=\text {) } & \begin{array}{l}\text { Makes or has the same amount as. }\end{array} \\ \hline \begin{array}{l}\text { Equivalent } \\ \text { fractions }\end{array} & \begin{array}{l}\text { To make an approximate or rough answer, often by } \\ \text { rounding. }\end{array} \\ \hline \text { Estimate } \frac{1}{2} \text { are equivalent fractions the same value. }\end{array}\right\}$

Less than (<)	Is smaller or lower than. Example: 15 is less than $21.15<21$.
Maximum	The largest or highest number in a group.
Mean	The arithmetic average of a set of numbers
Median	Another type of average - the middle number of an ordered set of data
Minimum	The smallest or lowest number in a group.
Minus (-)	To subtract.
Mode	Another type of average - the most frequent number or category
Most	The largest or highest number in a group (maximum).
Multiple	A number which can be divided by a particular number, leaving no remainder. Example Some of the multiples of 4 are $8,16,48,72$
Multiply (x)	To combine an amount a particular number of times. Example $6 \times 4=24$
Negative Number	A number less than zero. Shown by a minus sign. Example -5 is a negative number.
Numerator	The top number in a fraction.
Non Numerical data	Data which is non numbers e.g. favourite football team, favourite sweet etc.
Odd Number	A number which is not divisible by 2 . Odd numbers end in $1,3,5,7$ or 9.
Operations	The four basic operations are addition, subtraction, multiplication and division.

Order of operations	The order in which operations should be done: BODMAS.
Place value	The value of a digit dependent on its place in the number. Example: in the number 1573.4, the 5 has a place value of 100.
p.m.	(post meridiem) Any time in the afternoon or evening (between 12 noon and midnight).
Prime Number	A number that has exactly 2 factors (can only be divided by itself and 1). Eg $2,3,5,7,11, \ldots$ Note that 1 is not a prime number as it only has 1 factor.
Product	The answer when two numbers are multiplied together. Example: The product of 5 and 4 is 20.
Share	The
The amount left over when dividing a number.	

Extra Practice with Numeracy

Mathletics

All pupils in S1 to S3 have logins to Mathletics. This website gives unlimited practice with the full S1-S3 Mathematics Course.

Username \qquad

Password \qquad

RBS Moneysense

This is an impartial financial education program that uses real-life experiences to help you develop good money habits. https://rbs.mymoneysense.com/home

BBC Bitesize

For S1-3, you will be looking mainly at the Level 2, 3 and 4 Mathematics sections. http://www.bbc.co.uk/education

Maths Workout

This will be used in school but can be used at home too.

National5maths

As well as help for pupils sitting their National 5 Maths, this website has a section to support your Maths and Numeracy in earlier stages:
http://www.national5maths.co.uk

Numeracy Ninjas

All S1 classes use Numeracy Ninjas in Maths. More questions available at www.numeracyninjas.org

Extra practice and videos found at www.mrbartonmaths.com and www.corbettmaths.com

